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Dynamics of inelastically colliding rough spheres: Relaxation of translational
and rotational energy
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We study the exchange of kinetic energy between translational and rotational degrees of freedom for
inelastic collisions of rough spheres. Even if equipartition holds in the initial state it is immediately destroyed
by collisions. The simplest generalization of the homogeneous cooling state allows for two temperatures,
characterizing translational and rotational degrees of freedom separately. For times larger than a crossover
frequency, which is determined by the Enskog frequency and the initial temperature, both energies decay
algebraically liket =2 with a fixed ratio of amplitudes, different from [S1063-651X%97)51112-3

PACS numbegps): 47.50+d, 51.10+y, 05.20.Dd

Kinetic theory of ine_lastically collidir!g. particlgs has be- A-V/'=—e(R-V), with ec[0,1], 1)
come a subject of growing research activity, motivated partly
by renewed interest in granular materials. A Boltzmann - - _
equation and the Enskog variant of it have been formulated nxV'=—g(nxVv), with ge[-11]. @
for inelastically colliding particles with normal and tangen- _
tial restitution[1—6]. Whereas the derivation of the kinetic Using the property of conserved linear and angular momenta
equation is relatively straightforward, the methods of solu-0ne obtains for the velocities after collision
tion which were developed for elastic collisions cannot be
taken over to the inelastic case because there is no simple , A ~ a .
stationary or local equilibrium distribution, around which V1= V1~ 7012~ (70~ 7)(N-V1IN+ 75 NX (@ + @),
one could expand the nonlinear kinetic equation. One simple
distribution is the homogeneous cooling stéteCS) [7,8], a
whi_ch depends on time only implic_itly via the average Ki- vy=0v,+ pit (7n— m)(ﬁ'vlz)l:'— Ty ﬁ><(m1+w2),
netic energyT(t). The latter is predicted to decay like 2 3)
for large times. The homogeneity assumption is certainly
violated when clustering occurs and, in particular, if inelastic ;L 2 . Mo~ A
collapse happens. Nevertheless we have found redé@itiy @1 = @01~ S X1t X [NX (@11 @p)],
a model of inelastically colliding rods that the kinetic energy
follows on averageat ™2 behavior, even if clustering occurs. 2 Mo~
This suggests that the above scaling law may be a useful W= Wy~ a(manler " NX[NX(w;+ w,)],
approximate description, even when the assumptions of HCS
break d_own. . . with v,,=v,—v, and parameterk:=4l/Ma? (k=0.4 for
In this paper we show that rotational and translational L
energy relax with different rates in general. Once friction ishomogeneous sphejes = (1+e€)2, and
' 71 = k(1+ B)[2(1+K)].

included, HCS with a single time dependent temperature is’t | : . . i
. X : X ; We consider a system of N classical particles, confined to
no longer consistent with the time evolution of translational

. . athree-dimensional volumié and interacting via a hard-core
and rotational energy separately. Instead, one has to intro-

duce two temperatures that characterize translational and rggtﬁzgzlr- E]E(‘)C;‘]epnislc"e(g ff;/?rg(ctt)en;iﬂ ?’n'ti lg(r)s\llté,(lﬁ:iit
tational degrees of freedom separately. Both are found to falf . Mo (L) =Mu;(l), gul Aty
off like t~2 with the ratio approaching a constant value,“"(t)' The time development of a dynamical variable

which is determined by the coefficients of normal and tan-ﬁ‘._A({ri(t)’pi(t)’w‘(t)}) is determined by a pseudo-
gential restitution. iouville-operatorL.

We briefly recall the collision dynamics of hard spheres
with normal and tangential restitution. These results can, for
example, be found in Cerginal6]. We consider two spheres

of equal diametea, massM, and moment of inertia. The uch a pseudo-Liouville-operator was first introduced for
unit vector from the cen}er of the first sphere to the center Oﬁard(perfectly smoothspheres by Ernstt al.[10] and sub-

the second is denoted Ioyand velocities and angular veloci- sequently applied to the calculation of transport coefficients
ties before collision by, vy, w;, andw,. The relative  of a hard sphere fluidsee, e.g.[11] and references thergin
velocity of the contact point before collision is given by van Noije and Ernsf12] have generalized the formalism to
V=v,+a/2nX w,—v;+a/2nX w;. Normal and tangential inelastic collisions with normal restitution. Here we extend
restitution determine the relative velocity after collision ac-these results to rough spheres with normal and tangential
cording to restitution.

A{ri,p o} t)=expli L, )A{r ,p; 01,00 for t>0.
4
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The pseudo-Liouville-operator§, consist of two parts, assuming that the system has been prepared in a thermal
L,=Ly+ L, . The first oneL,, describes free streaming of equilibrium statep(0)e=exp(—E/T), which is characterized

particles by the temperature B2=(E),_o,. The changes of transla-
tional and rotational energy are given by

Lo=— 2 pa Y, 5 27wa’T¥nyg(a) k
M n _ 0 _ 2 _ 2
n Vy= (TrM)ll? (l 6)+1+k(1 B))v

and the second on&,. =33 ,.,T.(nm), describes hard- (12

core collisions of two particles by 27a2T¥n,g(a)
0

(7TM)1/2

Viot— —

! 1— B2 13
o A T 13
T+(nm):M(pnm'rnm)e)(_pnm'rnm)

Here g(a) denotes the pair correlation at contact and

X 8(|Fhml —a) (b= 1). (6) No= N/V. Rotational energy is conserved in two cases, for
either perfectly smooth sphereg£ —1) or perfectly rough

The operatob,, replaces the linear and angular momenta ofSPheres g=+1). Translational energy is only conserved if
two particlesn andm before collision by the corresponding in @dditione=1. For all other values of the parameterand
ones after collision®(x) is the Heaviside step-function and B the translational and rotational energy decrease linearly
we have introduced the notatiqm = pn—Pms 'nm="n—"m with time but with differentrates. This implies that after a

small time intervalAt equipartition among rotational and

andr= r/!r|. . . . translational degrees of freedom no longer holds
Equation (6) has a simple interpretation. The factor '
(pnm.an)/M gives the flux of incoming particles. The® (Ey)yar=(Ey)o— vyt
and S functions specify the conditions for a collision to take (14
lace. A collisi icl h ly if
place. A collision between particlesandm happens only i (Eroat={Erodo— Vit

the two particles are approaching each other, which is taken

into account by® (—Pay: Fam) - At the instant of a collision  Hence for collisions with friction g+ —1) the homoge-
the distance between the two particles has to vanish, as exeous cooling state is not consistent with the time evolution
pressed byd(|rnn—a). Finally (b,,—1) generates the of translational and rotational energy separately. To general-

change of linear and angular momeft8]. ~~ jze the concept of a homogeneous cooling state to collisions
The ensemble average of a dynamical variable is definegith friction we introduce two temperaturds(t) = 2/3(E,),
by and T,o(t) =2/3(E,op); - We keep the assumption of spatial
homogeneity and assume that both linear and angular mo-
_ _ menta are normally distributed with in general different time
(A f dTp(O)AM) f dlp(HAC0) dependent widths or temperatures

N

p(t)xexp— % 2, IMBITU() 16 To(n)]. (15

- [ TI tendpdan]] o(lry~a)pvA©). @

Here p(t) =exp(-iL.1)p(0) is the N-particle distribution The above distribution allows for a calculation of the decay

fuTnc'uon, whose time (_avoluuon is governed by th? adJOIntrates ofT(t) andT,y(t) for arbitrary times, resulting in two
L., of the time evolution operatof, . The quantities of . . .
coupled differential equations,

interest are the translational and rotational energies per par-

ticle d y y
Ly Gi T~ (1= &) 2Ty L= ) T L i Ty Tor,
Ee=y 2 > U (8) (16)
d Y orap_ T Tt 172
Erotzé z %wiz’ ) aTrot_F 7 Ty _'y? 1_? TrotTi* (17)
1
o with y=(16/3)a?nqg(a) =/M.
as well as the total kinetic enerd@y=Ey+E . As we have seen above the energies decrease linearly for
As a first step we compute the initial decay rates short times. For large times both, translational and rotational
energy fall off algebraically like =2 with, however, different
d E —iL.E _ 10 amplitudes. The amplitudes can be determined analytically,
&< wt=0= (1 L+E)i=0= 1, (10 e.g., by solving the differential equation for
d ATy —Tol(1- eA)/a+ p(1— )1+ TrrpilK

dt (Brap1=0= (1L Erotdt=0= ¥rot. (1D ATt Tunt/ K= Tl 1= 7 /K) 71K 18
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FIG. 1. Time decay of the translational and rotational energy. FIG. 2. Ratio +-T,,/T, as a function of time withk=0.4,
Parameters were chosen accordingke:0.4, e=0.4, B=—0.6, v=1, Ty (0)=T,(0)=100, €=0.6, B=—-0.4, and €=0.4,
andT,(0)=T,,(0)=20. We have introduced a dimensionless time 8= —0.6. Unit of time was chosen as in Fig. 1.
argument 7=ty T(0). The dashed—dotted line indicates the
asymptotics. confirmed for a wide range of parameters such that the sys-
tem is stable to shear fluctuatiofi6] and inelastic collapse.
This equation is solved by a constant ratib, /T, Luding[17] has considered a more detailed model of inelas-
=—cy/c+ 1+ (c,/c,)? with ¢q,c, given in terms ofe, g tic collisions, including tangential restitution and Coulomb’s
and k by c;=(1—-€?)/4+(1—pB%)(k—1)/(4k+4) and law of friction. It is straightforward to generalize the model
c,=2k(1+ B)%/(2+2k)?, in agreement with Ref5]. The to include Coulomb friction; one just has to modify the up-
crossover time, between the linear regime and the algebraicdating rulegEq. (3)] accordingly. Driving the system with a
decay is determined byy and T,(0) according totgl vibrating wall is an open problem so far. One may also gen-
« y\Ty(0). Thefull solution [14] has been obtained by nu- €eralize the approach to nonspherical objects, e.g., hard rods
merical integration of Eqg16,17 and is shown in Fig. 1 for Or needled 18], for which elastic collisions have been ana-
k=04, y=1, =04, p=-06, and T,(0) lyzed by Frenkel and Maguirgl9].
=T,{(0)=20. The asymptotics is indicated by a dashed- Note addedAfter this paper was completed we learned
dotted line and the inset is a blowup of the short time behavabout related work by S. McNamara and S. Luding who also
ior. The deviation of the ratio of rotational and translationalstudied the ratio of translational and rotational energy in the
energy from 1, i.e., £ T,/ Ty, is shown in Fig. 2 for two HCS.
different values of8 ande.
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