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Dynamics of inelastically colliding rough spheres: Relaxation of translational
and rotational energy
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We study the exchange of kinetic energy between translational and rotational degrees of freedom for
inelastic collisions of rough spheres. Even if equipartition holds in the initial state it is immediately destroyed
by collisions. The simplest generalization of the homogeneous cooling state allows for two temperatures,
characterizing translational and rotational degrees of freedom separately. For times larger than a crossover
frequency, which is determined by the Enskog frequency and the initial temperature, both energies decay
algebraically liket22 with a fixed ratio of amplitudes, different from 1.@S1063-651X~97!51112-3#

PACS number~s!: 47.50.1d, 51.10.1y, 05.20.Dd
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Kinetic theory of inelastically colliding particles has b
come a subject of growing research activity, motivated pa
by renewed interest in granular materials. A Boltzma
equation and the Enskog variant of it have been formula
for inelastically colliding particles with normal and tange
tial restitution @1–6#. Whereas the derivation of the kinet
equation is relatively straightforward, the methods of so
tion which were developed for elastic collisions cannot
taken over to the inelastic case because there is no sim
stationary or local equilibrium distribution, around whic
one could expand the nonlinear kinetic equation. One sim
distribution is the homogeneous cooling state~HCS! @7,8#,
which depends on time only implicitly via the average k
netic energyT(t). The latter is predicted to decay liket22

for large times. The homogeneity assumption is certai
violated when clustering occurs and, in particular, if inelas
collapse happens. Nevertheless we have found recently@9# in
a model of inelastically colliding rods that the kinetic ener
follows on averagea t22 behavior, even if clustering occurs
This suggests that the above scaling law may be a us
approximate description, even when the assumptions of H
break down.

In this paper we show that rotational and translatio
energy relax with different rates in general. Once friction
included, HCS with a single time dependent temperatur
no longer consistent with the time evolution of translation
and rotational energy separately. Instead, one has to in
duce two temperatures that characterize translational and
tational degrees of freedom separately. Both are found to
off like t22 with the ratio approaching a constant valu
which is determined by the coefficients of normal and ta
gential restitution.

We briefly recall the collision dynamics of hard spher
with normal and tangential restitution. These results can,
example, be found in Cerginani@6#. We consider two sphere
of equal diametera, massM , and moment of inertiaI . The
unit vector from the center of the first sphere to the cente
the second is denoted byn̂ and velocities and angular veloc
ties before collision byv1 , v2 , v1 , and v2 . The relative
velocity of the contact point before collision is given b
V5v21a/2 n̂3v22v11a/2 n̂3v1 . Normal and tangentia
restitution determine the relative velocity after collision a
cording to
561063-651X/97/56~6!/6275~4!/$10.00
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n̂•V852e~ n̂•V!, with eP@0,1#, ~1!

n̂3V852b~ n̂3V!, with bP@21,1#. ~2!

Using the property of conserved linear and angular mome
one obtains for the velocities after collision

v185v12h tv122~hn2h t!~ n̂•v12!n̂1h t

a

2
n̂3~v11v2!,

v285v21h tv121~hn2h t!~ n̂•v12!n̂2h t

a

2
n̂3~v11v2!,

~3!

v185v12
2

ak
h tn̂3v121

h t

k
n̂3@ n̂3~v11v2!#,

v285v22
2

ak
h tn̂3v121

h t

k
n̂3@ n̂3~v11v2!#,

with v125v12v2 and parametersk:54I /Ma2 ~k50.4 for
homogeneous spheres!, hn :5 (11e)/2, and
h t :5 k(11b)/@2(11k)#.

We consider a system of N classical particles, confined
a three-dimensional volumeV and interacting via a hard-cor
potential. Each particle is characterized by its positionr i(t),
its linear momentumpi(t)5Mvi(t), and angular velocity
vi(t). The time development of a dynamical variab
A5A„$r i(t),pi(t),vi(t)%… is determined by a pseudo
Liouville-operatorL1

A~$r i ,pi ,vi%,t !5exp~ iL1t !A„$r i ,pi ,vi%,0… for t.0.
~4!

Such a pseudo-Liouville-operator was first introduced
hard~perfectly smooth! spheres by Ernstet al. @10# and sub-
sequently applied to the calculation of transport coefficie
of a hard sphere fluid~see, e.g.,@11# and references therein!.
Van Noije and Ernst@12# have generalized the formalism t
inelastic collisions with normal restitution. Here we exte
these results to rough spheres with normal and tange
restitution.
R6275 © 1997 The American Physical Society
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The pseudo-Liouville-operatorsL1 consist of two parts,
L15L01L18 . The first one,L0 , describes free streaming o
particles

L052
i

M (
n

pn•“ rn
~5!

and the second one,L18 5 1
2 (nÞmT1(nm), describes hard-

core collisions of two particles by

T1~nm!5
i

M
~pnm• r̂nm!Q~2pnm• r̂nm!

3d~ urnmu2a!~bnm
1 21!. ~6!

The operatorbnm
1 replaces the linear and angular momenta

two particlesn andm before collision by the correspondin
ones after collision.Q(x) is the Heaviside step-function an
we have introduced the notationpnm5pn2pm , rnm5rn2rm

and r̂5r/uru.
Equation ~6! has a simple interpretation. The fact

(pnm• r̂nm)/M gives the flux of incoming particles. TheQ
andd functions specify the conditions for a collision to tak
place. A collision between particlesn andm happens only if
the two particles are approaching each other, which is ta
into account byQ(2pnm• r̂nm). At the instant of a collision
the distance between the two particles has to vanish, as
pressed byd(urnmu2a). Finally (bnm21) generates the
change of linear and angular momenta@13#.

The ensemble average of a dynamical variable is defi
by

^A& t5E dGr~0!A~ t !5E dGr~ t !A~0!

5E )
i

~dr idpidvi !)
i , j

Q~ ur i j u2a!r~ t !A~0!. ~7!

Here r(t)5exp(2iL1
† t)r(0) is the N-particle distribution

function, whose time evolution is governed by the adjo
L1

† of the time evolution operatorL1 . The quantities of
interest are the translational and rotational energies per
ticle

Etr5
1

N (
i

M

2
vi

2, ~8!

Erot5
1

N (
i

I

2
vi

2, ~9!

as well as the total kinetic energyE5Etr1Erot .
As a first step we compute the initial decay rates

d

dt
^Etr& t505^ iL1Etr& t505n tr , ~10!

d

dt
^Erot& t505^ iL1Erot& t505n rot , ~11!
f

n

x-

d

t

ar-

assuming that the system has been prepared in a the
equilibrium stater(0)}exp(2E/T), which is characterized
by the temperature 3T/25^E& t50 . The changes of transla
tional and rotational energy are given by

n tr52
2pa2T3/2n0g~a!

~pM !1/2 S ~12e2!1
k

11k
~12b2! D ,

~12!

n rot52
2pa2T3/2n0g~a!

~pM !1/2 S 1

11k
~12b2! D . ~13!

Here g(a) denotes the pair correlation at contact a
n05N/V. Rotational energy is conserved in two cases,
either perfectly smooth spheres (b521) or perfectly rough
spheres (b511). Translational energy is only conserved
in additione51. For all other values of the parameterse and
b the translational and rotational energy decrease line
with time but with different rates. This implies that after a
small time intervalDt equipartition among rotational an
translational degrees of freedom no longer holds,

^Etr&Dt5^Etr&02n trDt,
~14!

^Erot&Dt5^Erot&02n rotDt.

Hence for collisions with friction (bÞ21) the homoge-
neous cooling state is not consistent with the time evolut
of translational and rotational energy separately. To gene
ize the concept of a homogeneous cooling state to collisi
with friction we introduce two temperaturesTtr(t)52/3̂ Etr& t
and Trot(t)52/3̂ Erot& t . We keep the assumption of spati
homogeneity and assume that both linear and angular
menta are normally distributed with in general different tim
dependent widths or temperatures

r~ t !}exp2
1

2 (
i 51

N

@Mvi
2/Ttr~ t !1I vi

2/Trot~ t !#. ~15!

The above distribution allows for a calculation of the dec
rates ofTtr(t) andTrot(t) for arbitrary times, resulting in two
coupled differential equations,

d

dt
Ttr52~12e2!

g

4
Ttr

3/22gh t~12h t!Ttr
3/21

g

k
h t

2Ttr
1/2Trot ,

~16!

d

dt
Trot5

g

k
h t

2Ttr
3/22g

h t

k S 12
h t

k DTrotTtr
1/2, ~17!

with g5(16/3)a2n0g(a)Ap/M .
As we have seen above the energies decrease linearl

short times. For large times both, translational and rotatio
energy fall off algebraically liket22 with, however, different
amplitudes. The amplitudes can be determined analytica
e.g., by solving the differential equation for

dTtr

dTrot
5

2Ttr@~12e2!/41h t~12h t!#1Troth t
2/k

Ttrh t
2/k2Trot~12h t /k!h t /k

. ~18!
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This equation is solved by a constant ratioTtr /Trot

52c1 /c21A11(c1 /c2)2 with c1 ,c2 given in terms ofe, b
and k by c15(12e2)/41(12b2)(k21)/(4k14) and
c252k(11b)2/(212k)2, in agreement with Ref.@5#. The
crossover timet0 between the linear regime and the algebr
decay is determined byg and Ttr(0) according to t0

21

}gATtr(0). Thefull solution @14# has been obtained by nu
merical integration of Eqs.~16,17! and is shown in Fig. 1 for
k50.4, g51, e50.4, b520.6, and Ttr(0)
5Trot(0)520. The asymptotics is indicated by a dashe
dotted line and the inset is a blowup of the short time beh
ior. The deviation of the ratio of rotational and translation
energy from 1, i.e., 12Trot /Ttr , is shown in Fig. 2 for two
different values ofb ande.

Cooling of a granular gas has been investigated by sev
groups@15,16# modeling collisions with a normal coefficien
of restitution. Thet22 behavior of the total energy has bee

FIG. 1. Time decay of the translational and rotational ener
Parameters were chosen according to:k50.4, e50.4, b520.6,
andTtr(0)5Trot(0)520. We have introduced a dimensionless tim
argument t5tgATtr(0). The dashed–dotted line indicates th
asymptotics.
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confirmed for a wide range of parameters such that the
tem is stable to shear fluctuations@16# and inelastic collapse
Luding @17# has considered a more detailed model of inel
tic collisions, including tangential restitution and Coulomb
law of friction. It is straightforward to generalize the mod
to include Coulomb friction; one just has to modify the u
dating rules@Eq. ~3!# accordingly. Driving the system with a
vibrating wall is an open problem so far. One may also g
eralize the approach to nonspherical objects, e.g., hard
or needles@18#, for which elastic collisions have been an
lyzed by Frenkel and Maguire@19#.

Note added.After this paper was completed we learne
about related work by S. McNamara and S. Luding who a
studied the ratio of translational and rotational energy in
HCS.

We wish to thank Timo Aspelmeier and Kurt Broderix fo
useful discussions, and one of us~M.H.! thanks the Land
Niedersachsen for financial support.

. FIG. 2. Ratio 12Trot /Ttr as a function of time withk50.4,
g51, Ttr(0)5Trot(0)5100, e50.6, b520.4, and e50.4,
b520.6. Unit of time was chosen as in Fig. 1.
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